Популярные сообщения

суббота, 1 ноября 2014 г.

Самый большой телескоп в Евразии

Попасть в это место в горах Карачаево-Черкесии я хотел очень давно. И вот, наконец, моя маленькая мечта — увидеть в действии Большой Телескоп Специальной астрофизической обсерватории РАН России, — сбылась! Я, конечно, и раньше слышал о крупных размерах телескопа, процесс строительства которого продолжался 15 лет, но когда я стал рядом с ним, и это уникальное сооружение не поместилось в мой объектив «фишай», был реально изумлен! Мы побывали и в подземной части обсерватории, также я сделал несколько снимков с воздуха.

В долине реки Большой Зеленчук, около Нижнего Архыза, в 60-е годы прошлого века был построен научно-исследовательский институт, Специальная астрофизическая обсерватория Российской академии наук. Главной площадкой для наблюдения стало место на высоте 2 100 метров возле горы Пастухова.

Диаметр купола — около 45 метров. Шторка в центре отодвигается наверх, обеспечивая наблюдения. Сам купол при этом может вращаться вокруг своей оси.

Решение о постройке телескопа с шестиметровым зеркалом было принято в 1960-м году. Несколько лет продолжалось проектирование и строительство, в том числе более трех лет изготавливалось зеркало, и в 1975-м году обсерватория была введена в строй.

Эта махина весом в 650 тонн может плавно двигаться вокруг своей оси.

Свет от зеркала собирается, концентрируется и отражается в верхнюю часть телескопа, где расположено первичное приемное устройство. Фокусное расстояние телескопа в итоге — 24 метра! Но если использовать дополнительное зеркало, отбрасывающее свет назад, а потом в один из боковых фокусов, то фокусное расстояние увеличивается до 180 метров!

Раньше внутри верхней части, напоминающей стакан, сидел человек, который принимал сигнал. Сейчас это делает электроника, а сигнал передается в рабочие помещения.

Телескоп закреплен на опорно-поворотной платформе с девятиметровой вертикальной осью. Верхнюю часть платформы мы видели выше, — это круг диаметром 12 метром, а ниже он переходит в сферическое кольцо, которое выполняет роль подшипника.

Фундамент телескопа отделен от общего фундамента башни, чтобы избежать лишних вибраций.

Рядом с обсерваторией построена гостиница для научных работников. Ведь работать, наблюдая за звездами, приходится ночью)

Телескоп БТА оставался самым большим телескопом в мире с 1975 года, пока спустя 18 лет его не превзошёл телескоп Кека в США. Сейчас он остается крупнейшим телескопом на нашем материке, и чтобы провести на нем исследования, записываются в очередь. Туристы же могут сюда попасть в дневное время, экскурсии доступны из курорта Романтик. Я рассказал о телескопе очень поверхностно, приглашаю всех желающих на полноценную экскурсию, лично приехав в это место, оно того достойно.

http://loveopium.ru/texnika/samyj-bolshoj-teleskop-v-..

Мифы, в которые все верят благодаря фантастическим фильмам



Наши познания о космосе похожи на наши знания об истории: бывает действительно сложно разобраться, где настоящие факты, а где запомнившиеся по фильмам. И в обоих случаях часто оказывается, что эти знания не просто неточны, а до смешного ошибочны. Какие же самые распространенные заблуждения о космосе мы вынесли из фантастических фильмов?

№6. Астероидные поля смертельно опасны.

Помните, как в фильме «Империя наносит ответный удар» Хан Соло удирает от Империи через астероидное поле? Чёртовы камни летают настольно плотно, что даже мелким имперским истребителям не пробраться через них, не рискуя быть раздавленными дрейфующими валунами. Через 20 лет в «Атаке клонов» Оби-Вану тоже придётся несладко.

И кроме «Звёздных войн» такие же поля астероидов мы видим в кинофантастике сплошь и рядом. Но на то они и астероидные поля, верно? Как сказал бы C-3PO, ваши шансы успешно пройти астероидный пояс бесконечно стремятся к нулю, примерно как в случае, когда на вас несётся стадо напуганных до смерти коров.

На самом деле.

Если посмотреть на снимки астероидного пояса в нашей солнечной системе, то выглядит он точно, как в «Звёздных войнах». Астероидов в нём действительно уйма — на сегодня неугомонные астрономы насчитали уже около полумиллиона. Но загвоздка в том, что малые планеты разделяют километры и километры вакуума, в среднем на 650 000 квадратных километров приходится по одному астероиду.

Поэтому, отправляя свои зонды лететь через астероидный пояс между Марсом и Юпитером, учёные NASA говорят, что шансов столкнуться с астероидом у аппарата… один на миллиард. Так что капитан Соло мог вести свой корабль хоть левой пяткой, всё равно шансов врезаться в астероид у него было бы столько же, сколько у вас по дороге в ближайший супермаркет.

Можно, конечно, поспорить, что в галактике, где давным-давно бушевали «Звездные войны», по какой-то причине часто встречаются сверхплотные астероидные поля, но всё же это в принципе невозможно — со временем астероиды всё равно рассеиваются.

Если бы у астероидного поля в какой-то момент плотность была такой же, как в «Звёздных войнах», то от постоянных взаимных столкновений астероиды довольно быстро разлетались бы во все стороны, и плотность уменьшилась бы.

№5. Чёрные дыры — санитары космоса.

Из всех космических ужасов чёрные дыры, пожалуй, нагляднее всего доказывают, что Вселенная ненавидит нас. Они невидимы, зловещи, огромны и, словно космический пылесос, засасывают в себя всё без разбору на световые годы вокруг.

Из-за последней особенности чёрные дыры с завидным постоянством появляются в каждой уважающей себя космоопере: от последнего «Звёздного пути» Джей Джей Абрамса до «Доктора Кто». Но всюду и всегда чёрная дыра предстает как чудовищной силы сосущая воронка, от которой невозможно сбежать.

На самом деле.

Давайте представим, что, проснувшись утром, мы обнаружили на месте нашего солнца чёрную дыру с аналогичной массой. Что же произойдёт? Да попросту ничего. Нет, мы, разумеется, замерзнем на смерть, потому что исчезнет источник тепла, согревающий нашу планету, и только. Но Земля совершенно точно останется на месте.

Потому что большинство людей забывает, что при всей своей широко разрекламированной мощи, чёрные дыры всё ещё обладают массой. Это значит, что, какими бы пугающе всесильными они не казались, притяжение чёрной дыры, как и любого другого объекта в нашей Вселенной, ограничено пределами, которые определяет её собственная масса. И если масса чёрной дыры равна массе Солнца, то и сила её притяжения будет равной, а значит, наша планета продолжит мирно вращаться по своей орбите.

Вот так-то, даже если вы — наводящая ужас чёрная дыра, это не освобождает вас от законов физики и бессердечной гравитации.

№4. Солнце жёлтое.

Цвет Солнца — вещь сама собой разумеющаяся, одна из тех вещей, которые мы усваиваем ещё в детском саду. Даже в принятых классификациях наша звезда значится как «жёлтый карлик». Так что же тут может быть не так?

Мы в курсе и того, какого цвета ближайшие к нам космические объекты, потому что у нас полно фотографий, добытых тем же телескопом «Хаббл», околоземными спутниками и курсирующими по солнечной системе зондами. Именно благодаря им Голливуд, а за ним и весь мир, узнал, какого цвета марсианское небо или лунные камни.

На самом деле

Солнце не жёлтое. Причина, по которой мы видим его таким — в земной атмосфере, окрашивающей солнечные лучи в желтоватый оттенок. Но не стоит забывать, что температура нашей звезды — 6000 градусов по Кельвину, и на самом деле у неё единственный возможный для настолько раскалённого объекта цвет. Белый. По факту, солнце ещё скучнее, чем Луна: на нём даже лица не разглядеть.

А что же с остальными телами нашей солнечной системы? Ведь у нас есть фотографии. У нас же есть марсоходы, фотографирующие поверхность Марса с расстояния вытянутой руки!

Вы будете удивлены, но ни одна из космических камер не делает цветных снимков. Цвет добавляют позже с помощью фильтров. Такие дела.

Но только не нужно думать, что это очередной заговор NASA и правительства. Внеземные фотографии — штука хитрая, и снимки, которые получаются в результате, отнюдь не всегда представляют самую точную версию предмета. Вместо этого учёными приходится подбирать комбинации цветов, которые лучше отвечают целям из работы.

«Цвета на снимках с телескопа Хаббла нельзя назвать ни правильными, ни неправильными», говорит Золт Левей, сотрудник Научного института космических наблюдений. «Чаще эти снимки представляют физический процесс, лежащий в основе предмета съемки. Они являются способом представить на одном снимке так много информации, сколько возможно получить».

Так что, да, все потрясающие космические фотографии, которые мы видим год за годом, это просто чёрно-белые снимки, раскрашенные, чтобы учёные могли более наглядно отразить каждую деталь изображения.

№ 3. Вы видели это в каждом фильме-катастрофе — возьмите хотя бы сцену из «Армагеддона», где огненные дымящие метеориты разносят Нью-Йорк. И хотя мы знаем, что не каждый фильм построен сплошь на научных фактах, если в вашем дворе упадёт метеорит, вы вряд ли броситесь сразу же хватать его руками — он же падал, оставляя огненный след в полнеба.

На самом деле.

Кусок камня миллиарды и миллиарды лет летал в космосе, где, кстати, космически холодно — всего на три градуса выше абсолютного нуля. После входа в атмосферу до столкновения с землёй у метеора будет лишь несколько секунд, настолько велика его скорость. И это значит, вне зависимости от того, что по этому поводу думает Майкл Бэй, у этого куска камня попросту нет времени, чтобы нагреться. Те, которые всё же долетают до земли, обычно слегка тепловатые.

Но откуда же тогда огненные шары? Почти все видели метеоритный дождь — они действительно горят. Но на деле наблюдаемый нами эффектный файрбол почти не имеет отношения к самому метеору. Это всего на всего воздушный слой, который образуется перед падающим метеором в атмосфере, именно он и нагревается, создавая вид горящего шара, но на температуру самого небесного тела это не влияет.

№2. Люди взрываются в вакууме.

Сцену «Ничтожный человечишка против космического вакуума» мы видели в кино бесчисленное множество раз. Фильмы категории «Б» наглядно демонстрируют: разница внутреннего и внешнего давления в открытом космосе в момент выворачивает человека наизнанку, не успеешь и глазом моргнуть. Тому же эффекту мы обязаны незабываемому пучеглазому Шварценеггеру из культового «Вспомнить всё», и вообще, всё это было в «Симпсонах».

На самом деле.

Всё верно показано у Кубрика в «Космической одиссее», где астронавту приходится недолго прогуляться в космосе без шлема. Конечно, пробыть так слишком долго у вас не выйдет, ведь дышать-то вам всё равно надо. Но ваша голова без шлема в вакууме определенно не взорвется.

Потому что у человека всё же есть пусть небольшая, но защита против космического вакуума — наша кожа и система кровообращения. Первая защищает наше тело настолько хорошо, что способна нейтрализовать эффект мгновенной разгерметизации.

Последняя же, быстро адаптируясь, продолжает делать свою работу, так что в безвоздушном пространстве наша кровь не закипит, как думают некоторые. Даже переохлаждение не является проблемой: хотя температура за бортом звездолёта стремится к абсолютному нулю, в космосе не так много материи, которая может поглотить тепло вашего тела.

Фактически, главная угроза для человека без скафандра в открытом космосе — это воздух в лёгких. Когда внешнее давление пропадает, объём газа в вашей груди расширится, что может привести к баротравме лёгкого, точно так же, как у аквалангиста, резко всплывающего с большой глубины.

Хотя всё это не значит, что для выхода в космос достаточно респиратора и плавок. Без скафандра Космическое пространство быстро с вами разделается. Только это будет не так зрелищно, как показывают в фильмах.

№1. На обратной стороне Луны всегда темно.

Общеизвестно, что Луна повернута к солнцу лишь одной стороной. Пока первая купается в тепле солнечных лучей, другая её часть обречена на вечную тьму и холод. Не удивительно, что тёмная сторона Луны в массовой культуре стала загадочным и жутким местом одинаково пригодным, чтобы прятать древнюю технологию Трансформеров и чтобы вдохновлять авторов психоделической музыки.

На самом деле.

Тёмной стороны луны не существует, равно как и тёмной стороны Земли. Да, действительно, в результате взаимного вращения планет, луна всегда повёрнута к Земле и наблюдателям на поверхности одним и тем же полушарием. Обратите внимание: к Земле. Но не к солнцу.

Так что на Тёмной стороне Луны на самом деле темно только по ночам. Ну, и во время затмений. Остальное время обе стороны получают солнечного света поровну: и мифическая «тёмная», и «светлая», та самая, с лицом, которую мы с вами видим.

Летальность Эболы зависит от генетических особенностей организма

Медики и учёные, которые исследуют вирус Эбола, давно заметили, что болезнь по-разному действует на людей. Несмотря на первоначальные данные о 90% смертности, сейчас стало понятно, что организм многих заболевших эффективно сопротивляется вирусу даже без интенсивного медицинского вмешательства. Другие пациенты, страдающие средней и тяжёлой формой лихорадки, также полностью восстанавливаются. И лишь отдельная категория людей демонстрирует такие страшные симптомы, как кровотечения, полиорганная недостаточность и шок.
В более ранних исследованиях учёные уже доказали, что различия между лёгкой и тяжёлой формой заболевания не определяются более сильной или ослабленной формой вируса, а зависят от способности организма побороться с инфекцией.
Ангела Расмуссен (Angela Rasmussen) и Михаэль Катце (Michael Katze) из Вашингтонского университета проводили исследование на специально выведенной линии мышей, которые при заражении вирусом Эбола демонстрировали сходные с человеком реакции организма.
Стоит отметить, что обычно мыши при заражении вирусом умирали, но не проявляли симптомов геморрагической лихорадки, встречающихся у людей. Что, по понятным причинам, затрудняло изучение болезни (фактически у медиков нет на руках модельных организмов).
Тогда учёные решили изучить несколько генетически изменённых групп грызунов, чтобы выяснить, где именно локализованы участки ДНК, связанные с сопротивлением заболеванию.
Биологи отмечают, что все мыши в первые дни после заражения потеряли вес. При этом 19% из них легко перенесли заболевание и полностью восстановились в течение двух недель без каких-либо побочных явлений для организма. 11% попали в группу частично устойчивых. Более половины таких зверьков выжили. Но большая часть подопытных (70%) относились к группе высокого риска, среди которых смертность составила свыше 50%. Кроме того, в последней группе у 19% мышей наблюдалось поражение печени, и это даже без проявления обычных симптомов лихорадки Эбола. Еще у 34% болезнь проходила в тяжёлой форме с кровотечениями, поражением селезёнки и изменением цвета и структуры печени.
Учёные соотнесли данные о смертности с генетическим профилем различных групп грызунов. Анализ показал, что, когда болезнь так или иначе влияла на гены, связанные с развитием воспаления кровеносных сосудов и гибелью клеток, последствия для организма оказывались тяжёлыми и часто приводили к смерти.
При этом у выживших особей была отмечена высокая активность в генах, ответственных за ремонт сосудов и производство белых кровяных телец, противостоящих инфекции.
Учёные также заметили, что наличие некоторых специализированных клеток в печени также препятствовало размножению вируса и обеспечивало мышам нормальную свёртываемость крови. При этом у наиболее восприимчивых к заболеванию животных именно поражение печени может объяснить повышенное содержание вируса в организме и плохую работу системы остановки кровотечений.
Исследователи добавляют, что все работы проводились с той самой формой вируса, которая сейчас свирепствует в Африке. При этом опыты проходили в хорошо защищённой лаборатории в Гамильтоне, где уже много лет изучают опасные инфекционные заболевания.
"Частота различных проявлений болезни у разных линий мышей, а также их разнообразие и соотношение аналогичны спектру клинических признаков заболевания, которое мы наблюдаем в Западной Африке в 2014 году, — говорит Расмуссен. — Наши данные свидетельствуют, что генетические факторы играют значительную роль в ходе заболевания".
Учёные полагают, что именно генетические особенности стали причиной ряда чудесных выздоровлений, когда казалось, что у пациентов выработался иммунитет к вирусу.
"Мы надеемся, что медики получат возможность быстро применить эти знания для терапии и разработки вакцин", — говорит Катце.
Авторы работы, опубликованной в издании Science считают, что новые результаты помогут быстро найти генетические маркеры, которые помогут прогнозировать развитие заболевания у каждого пациента и оперативно подбирать лечение.

Астронавт Крис Хэдфилд выпустил книгу с лучшими фотографиями Земли, сделанными с орбиты

По его мнению, рассматривать эти снимки — это «как впервые увидеть себя в зеркале, только в глобальном масштабе».

Как сделать селфи в невесомости от Олега Артемьева


Daymak Drive System превращает любой велосипед в электровелосипед на солнечной энергии


System (DDS) – это небольшое устройство превращающее обычный велосипед в транспортное средство с мотором работающим от солнечной энергии.

Блок DDS устанавливается вместе с новым колесом на место предыдущего заднего колеса велосипеда. В начале следующего года, когда DDS попадет в продажу, будут доступны 26 и 28 дюймовые версии колес.

Один час пребывания на солнце, независимо от того, стоит велосипед или движется, позволяет накопить энергии достаточной для одного километра перемещения от DDS мотора.

250 Вт мотор находится внутри DDS блока и работает от встроенного 36-volt 12-Ah аккумулятора. На максимальном заряде батареи достаточно для 45 километровой поездки, и заряжать ее не обязательно под солнцем, сделать это можно и подключив DDS к розетке.

Управляющий блок DDS крепится к рулю и позволяет регулировать насколько мотор помогает перемещению велосипедиста. Оба модуля общаются между собой по беспроводному интерфейсу.

Управляющий блок также работает от солнечной батареи и в нем есть USB выход, позволяющий подключать внешние устройства для получения заряда.

Ориентировочная стоимость около 700$


Как действует водородная бомба и каковы последствия взрыва?

12 августа 1953 года на Семипалатинском полигоне Советским Союзом была успешно испытана первая в мире водородная бомба, мощность заряда которой составила 400 килотонн тротилового эквивалента. После испытания академик Сахаров и его коллеги начали работать над созданием двухступенчатой водородной бомбы.

16 января 1963 года, в самый разгар холодной войны, Никита Хрущёв заявил миру о том, что Советский союз обладает в своём арсенале новым оружием массового поражения — водородной бомбой. За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире — на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Во многом именно это заявление советского лидера заставило мир осознать угрозу дальнейшей эскалации гонки ядерных вооружений: уже 5 августа 1963 г. в Москве был подписан договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой.

История создания

Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества — но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.

Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива — дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн — самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба».

Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно — это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае (в 1967 году) и во Франции (в 1968 году).

Принцип действия водородной бомбы

Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии — благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом.

Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн — его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.

Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы — т. е. такая «слойка» позволяет наращивать мощность взрыва практически неограниченно. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности.